# Algorithm Baselines Last updated: 06/18/2025. ## Math related datasets ### GSM8k Assuming GSM8k/math dataset is preprocessed via: ```bash python3 examples/data_preprocess/*.py ``` Refer to the table below to reproduce RL training from different pre-trained checkpoints. Below is the performance on the GSM8k dataset if not specified otherwise. More comprehensive benchmark results areavailable in the recipe folder. | Hardware | Model | Method | Test score | Details | |-------------|----------------------------------|-------------------|--------------|---------| | NVIDIA GPU | google/gemma-2-2b-it | hf checkpoint | 23.9 | [Huggingface](https://huggingface.co/google/gemma-2-2b-it#benchmark-results) | | NVIDIA GPU | google/gemma-2-2b-it | SFT | 52.06 | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/gemma-2-2b-it-sft-0.411.log) | | NVIDIA GPU | google/gemma-2-2b-it | SFT + PPO | 64.02 | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/gemma-2-2b-it-ppo-bsz512_4-prompt1024-resp-512-0.640.log), [wandb](https://api.wandb.ai/links/verl-team/h7ux8602) | | NVIDIA GPU | Qwen/Qwen2.5-0.5B-Instruct | hf checkpoint | 36.4 | [Qwen blog](https://qwenlm.github.io/blog/qwen2.5-llm/) | | NVIDIA GPU | Qwen/Qwen2.5-0.5B-Instruct | PPO | 56.7 | [command and log](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-0.5B-bsz256_2-prompt1024-resp512-0.567.log) | | NVIDIA GPU | Qwen/Qwen2.5-0.5B-Instruct | PRIME | 58.7 | [script](https://github.com/volcengine/verl/blob/main/recipe/prime/run_prime_qwen.sh), [wandb](https://api.wandb.ai/links/zefan-wang-thu-tsinghua-university/rxd1btvb) | | NVIDIA GPU | Qwen/Qwen2.5-0.5B-Instruct | GRPO-LoRA | 54.3 | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-0.5B-bsz64_2-prompt512-resp1024-lorarank32-score0.543.log)| | NVIDIA GPU | Qwen/Qwen2.5-1.5B-Instruct | GRPO-LoRA | 77.9 | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-1.5B-bsz64_2-prompt512-resp1024-lorarank32-score0.779.log)| | NVIDIA GPU | Qwen/Qwen2.5-3B-Instruct | GRPO-LoRA | 86.1 | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-3B-bsz64_2-prompt512-resp1024-lorarank32-score0.861.log)| | NVIDIA GPU | deepseek-ai/deepseek-llm-7b-chat | PPO (Megatron) | 69.5 [1] | [log](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/deepseek-llm-7b-chat-megatron-bsz256_4-prompt512-resp512-0.695.log), [wandb](https://wandb.ai/verl-team/verl_megatron_gsm8k_examples/runs/10fetyr3) | | NVIDIA GPU | Qwen/Qwen2-7B-Instruct | GRPO | 89 | [script](https://github.com/volcengine/verl/blob/a65c9157bc0b85b64cd753de19f94e80a11bd871/examples/grpo_trainer/run_qwen2-7b_seq_balance.sh) | | NVIDIA GPU | Qwen/Qwen2-7B-Instruct | GRPO (FSDP2) | 89.8 | [log](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/qwen2-7b-fsdp2.log) | | NVIDIA GPU | Qwen/Qwen2-7B-Instruct | GRPO (Megatron) | 89.6 | [log](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/qwen2-7b_math_megatron.log) | | NVIDIA GPU | Qwen/Qwen2.5-7B-Instruct | ReMax | 97 | [script](https://github.com/eric-haibin-lin/verl/blob/main/examples/remax_trainer/run_qwen2.5-3b_seq_balance.sh), [wandb](https://wandb.ai/liziniu1997/verl_remax_example_gsm8k/runs/vxl10pln) | | NVIDIA GPU | Qwen/Qwen2.5-7B-Instruct | SPPO | 65.6 (MATH) | [SPPO script](https://github.com/volcengine/verl/tree/main/recipe/sppo/README.md) | | NVIDIA GPU | Qwen/Qwen2.5-7B-Instruct | GRPO-LoRA | 93.4 | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-7B-bsz64_8-prompt512-resp1024-lorarank32-score0.934.log)| | NVIDIA GPU | Mixtral-8x22B-Instruct-v0.1 | Instruct model | 83.7 | [Qwen Blog](https://qwenlm.github.io/blog/qwen2.5-llm/) | | NVIDIA GPU | Mixtral-8x22B-Instruct-v0.1 | RLOO (Megatron) | 92.3 | [wandb](https://api.wandb.ai/links/ppo_dev/sbuiuf2d) | | NVIDIA GPU | Qwen/Qwen2.5-7B-Instruct | SPIN | 92 | [script](https://github.com/volcengine/verl/tree/main/recipe/spin/README.md) | | NVIDIA GPU | Qwen/Qwen2-7B-Instruct | GPG | 88 | [log](https://github.com/diqiuzhuanzhuan/verldata/blob/main/run_logs/qwen2-7b_math.log), [wandb](https://wandb.ai/diqiuzhuanzhuan/verl_gpg_example_gsm8k_math/runs/ab86c4va) | | NVIDIA GPU | Qwen/Qwen2-7B-Instruct | GPG (Megatron) | 88 | [log](https://github.com/diqiuzhuanzhuan/verldata/blob/main/run_logs/qwen2-7b_math_megatron.log), [wandb](https://wandb.ai/diqiuzhuanzhuan/verl_gpg_example_gsm8k_math/runs/yy8bheu8) | | NVIDIA GPU | Qwen/Qwen2.5-VL-7B-Instruct | GRPO (Megatron) | 65.4 (GEO3k) | [script](https://github.com/volcengine/verl/blob/main/examples/grpo_trainer/run_qwen2_5_vl-7b-megatron.sh), [wandb](https://api.wandb.ai/links/megatron-core-moe-dev/1yngvkek) | | AMD MI300 | deepseek-ai/deepseek-llm-7b-chat | PPO | 70.5 [1] | [log](https://github.com/yushengsu-thu/verl_training_log/blob/main/gsm8k/ppo_run_deepseek7b_llm.log) | | AMD MI300 | deepseek-ai/deepseek-llm-7b-chat | GRPO | 71.4 [1] | [log](https://github.com/yushengsu-thu/verl_training_log/blob/main/gsm8k/grpo_run_deepseek7b_llm.log) | | NVIDIA GPU | Qwen/Qwen2.5-14B-Instruct | GRPO-LoRA | 94.6 | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-14B-bsz64_8-prompt512-resp1024-lorarank32-score0.946.log)| | NVIDIA GPU | Qwen/Qwen2.5-32B-Instruct | GRPO-LoRA | 95.8 | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-32B-bsz64_8-prompt512-resp1024-lorarank32-score0.958.log)| | NVIDIA GPU | Qwen/Qwen2.5-72B-Instruct | GRPO-LoRA | 96.0 | [command and logs](https://github.com/eric-haibin-lin/verl-data/blob/experiments/gsm8k/Qwen2.5-72B-bs64_8-prompt512-resp1024-lorarank32-score0.960.log)| ### DAPO math-17k - Training DAPO math-17k dataset: https://huggingface.co/datasets/BytedTsinghua-SIA/DAPO-Math-17k - Testing: AIME'24: https://huggingface.co/datasets/BytedTsinghua-SIA/AIME-2024 Note: - For Qwen/Qwen2.5-Math-7B, we directly modify the max_position_embeddings to 32768 without observing performance degradation in order to train longer response length. | Hardware | Model | Method | Test score | Details | |-------------|----------------------------------|-------------------|--------------|---------| | NVIDIA GPU | Qwen/Qwen2.5-Math-7B (32k) | DAPO | 36.3 | [command](https://github.com/volcengine/verl/blob/main/recipe/dapo/test_dapo_7b_math.sh), [logs](https://wandb.ai/verl-org/DAPO%20Reproduction%20on%20verl/runs/ow47vvon?nw=nwusertongyuxuan361)| ## Coding related datasets Below is the result on leetcode if not specified otherwise. | Hardware | Model | Method | Test score | Details | |-------------|----------------------------------|-------------------|--------------|---------| | NVIDIA GPU | PRIME-RL/Eurus-2-7B-SFT | RPIME | 36.1 | [script](https://github.com/volcengine/verl/blob/main/recipe/prime/run_prime_qwen_code.sh), [swanlab](https://swanlab.cn/@wangzefan/prime_example/runs/7f541qhspgmy8nmhdlx35/chart) | ### Notes [1] During evaluation, we have only extracted answers following the format `"####"`. A more flexible answer extraction, longer response length, and better prompt engineering may lead to a higher score. [2] The default value of `actor_rollout_ref.actor.entropy_coeff` is set to `0.0` since verl 0.3.x on 2025-05-30, which is different from previous versions.