Getting started with AMD (ROCM Kernel) ===================================================== Last updated: 06/02/2025. Author: `Yusheng Su `_ Setup ----- If you run on AMD GPUs (MI300) with ROCM platform, you cannot use the previous quickstart to run verl. You should follow the following steps to build a docker and set ``RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES`` or ``RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES`` when starting ray in verl's RLHF training. docker/Dockerfile.rocm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash # Build the docker in the repo dir: # docker build -f docker/Dockerfile.rocm -t verl-rocm . # docker images # you can find your built docker # Support - Traing: fsdp; Inference: vllm # FROM rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4 # Support - Traing: fsdp; Inference: vllm, sglang FROM lmsysorg/sglang:v0.4.6.post5-rocm630 # Set working directory # WORKDIR $PWD/app # Set environment variables ENV PYTORCH_ROCM_ARCH="gfx90a;gfx942" ENV HIPCC_COMPILE_FLAGS_APPEND="--amdgpu-target=gfx90a;gfx942 -D__HIP_PLATFORM_AMD__" ENV CFLAGS="-D__HIP_PLATFORM_AMD__" ENV CXXFLAGS="-D__HIP_PLATFORM_AMD__" # Install vllm RUN pip uninstall -y vllm && \ rm -rf vllm && \ git clone -b v0.6.3 https://github.com/vllm-project/vllm.git && \ cd vllm && \ MAX_JOBS=$(nproc) python3 setup.py install && \ cd .. && \ rm -rf vllm # Copy the entire project directory COPY . . # Install dependencies RUN pip install "tensordict<0.6" --no-deps && \ pip install accelerate \ codetiming \ datasets \ dill \ hydra-core \ liger-kernel \ numpy \ pandas \ peft \ "pyarrow>=15.0.0" \ pylatexenc \ "ray[data,train,tune,serve]>=2.45.0" \ torchdata \ transformers \ wandb \ orjson \ pybind11 && \ pip install -e . --no-deps # Install torch_memory_saver RUN pip install git+https://github.com/ExtremeViscent/torch_memory_saver.git --no-deps Build the image: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash docker build -t verl-rocm . Run the container ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Optional: Running without root and with user permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: bash docker run --rm -it \ --device /dev/dri \ --device /dev/kfd \ -p 8265:8265 \ --group-add video \ --cap-add SYS_PTRACE \ --security-opt seccomp=unconfined \ --privileged \ -v $HOME/.ssh:/root/.ssh \ -v $HOME:$HOME \ --shm-size 128G \ -w $PWD \ verl-rocm \ /bin/bash (Optional): If you do not want to root mode and require assign yourself as the user Please add ``-e HOST_UID=$(id -u)`` and ``-e HOST_GID=$(id -g)`` into the above docker launch script. Example ------- Due to to special setting in AMD (ROCM) torch, 1. If your ``ray>=2.45.0`` (default), you need to set ``RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES`` when starting ray in verl's RLHF training. 2. If your ``ray<2.45.0``, you need to set ``RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES`` when starting ray in verl's RLHF training. Inference ``$ENGINE`` can be ``vllm`` or ``sglang``. We choose ``vllm`` as default in the following examples. PPO ~~~ .. code-block:: bash YOUR_PROJECT_NAME=r1-verl-ppo-upstream YOUR_RUN_NAME=r1-training_ppo-upstream # export HYDRA_FULL_ERROR=1 # [ray] < 2.45.0 #export RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1 # [ray] >= 2.45.0 export RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1 # Patch with https://github.com/ray-project/ray/pull/52794 GPUS_PER_NODE=8 MODEL_PATH=Qwen/Qwen2.5-0.5B-Instruct python3 examples/data_preprocess/gsm8k.py --local_dir data/gsm8k python3 -c "import transformers; transformers.pipeline('text-generation', model='$MODEL_PATH')" ENGINE=vllm #sglang PYTHONUNBUFFERED=1 python3 -m verl.trainer.main_ppo \ data.train_files=data/gsm8k/train.parquet \ data.val_files=data/gsm8k/test.parquet \ data.train_batch_size=256 \ data.val_batch_size=1312 \ data.max_prompt_length=512 \ data.max_response_length=256 \ actor_rollout_ref.model.path=$MODEL_PATH \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.ppo_mini_batch_size=64 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \ actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ actor_rollout_ref.rollout.name=$ENGINE \ actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \ actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \ critic.optim.lr=1e-5 \ critic.model.path=$MODEL_PATH \ critic.ppo_micro_batch_size_per_gpu=4 \ algorithm.kl_ctrl.kl_coef=0.001 \ trainer.logger=['console'] \ trainer.project_name=$YOUR_PROJECT_NAME \ trainer.experiment_name=$YOUR_RUN_NAME \ trainer.val_before_train=False \ trainer.default_hdfs_dir=null \ trainer.n_gpus_per_node=$GPUS_PER_NODE \ trainer.nnodes=1 \ trainer.save_freq=10 \ trainer.test_freq=10 \ trainer.total_epochs=15 #2>&1 | tee verl_demo.log GRPO ~~~~ .. code-block:: bash YOUR_PROJECT_NAME=r1-verl-grpo-upstream YOUR_RUN_NAME=r1-training_grpo-upstream # export HYDRA_FULL_ERROR=1 # export FSDP_VERBOSE=1 # [ray] < 2.45.0 #export RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1 # [ray] >= 2.45.0 export RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1 # Patch with https://github.com/ray-project/ray/pull/52794 GPUS_PER_NODE=8 MODEL_PATH=Qwen/Qwen2.5-0.5B-Instruct # MODEL_PATH=Qwen/Qwen2-7B-Instruct python3 examples/data_preprocess/gsm8k.py --local_dir data/gsm8k python3 -c "import transformers; transformers.pipeline('text-generation', model='$MODEL_PATH')" ENGINE=vllm #sglang python3 -m verl.trainer.main_ppo \ algorithm.adv_estimator=grpo \ data.train_files=data/gsm8k/train.parquet \ data.val_files=data/gsm8k/test.parquet \ data.train_batch_size=1024 \ data.val_batch_size=1312 \ data.max_prompt_length=512 \ data.max_response_length=1024 \ actor_rollout_ref.model.path=$MODEL_PATH \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.use_dynamic_bsz=True \ actor_rollout_ref.actor.ppo_max_token_len_per_gpu=24000 \ actor_rollout_ref.actor.use_kl_loss=True \ actor_rollout_ref.actor.kl_loss_coef=0.001 \ actor_rollout_ref.actor.kl_loss_type=low_var_kl \ actor_rollout_ref.model.enable_gradient_checkpointing=Flase \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.rollout.tensor_model_parallel_size=2 \ actor_rollout_ref.rollout.name=$ENGINE \ actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \ actor_rollout_ref.rollout.n=5 \ actor_rollout_ref.ref.fsdp_config.param_offload=False \ algorithm.kl_ctrl.kl_coef=0.001 \ trainer.critic_warmup=0 \ trainer.logger=['console'] \ trainer.project_name=$YOUR_PROJECT_NAME \ trainer.experiment_name=$YOUR_RUN_NAME \ trainer.n_gpus_per_node=$GPUS_PER_NODE \ trainer.val_before_train=False \ trainer.nnodes=1 \ trainer.save_freq=-1 \ trainer.test_freq=10 \ trainer.total_epochs=15 Multi-node training: slurm with Docker/Podman container --------------------------------------------------------------------------------------- If you want to run multi-node training with slurm, you can use the following script. .. note:: 1. You need to use ``podman`` or ``docker`` in the following script. We will release the apptainer script later. 2. If you want to use ``podman``, you just replace ``docker`` with ``podman`` in the following script. The script includes the following steps: 1. SLURM Configuration 2. Environment Setup 3. Docker/Podman Container Setup 4. Ray Cluster Initialization 5. Data Preprocessing 6. Model Setup 7. Training Launch slurm_script.sh ~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash #!/bin/bash #SBATCH --job-name=verl-ray-on-slurm #SBATCH --nodes=2 #SBATCH --ntasks-per-node=2 #SBATCH --mem=200G #SBATCH --time=30-00:00:00 #SBATCH --gpus-per-node=8 #SBATCH --cpus-per-task=28 #SBATCH --output=../verl_log/slurm-%j.out #SBATCH --error=../verl_log/slurm-%j.err #SBATCH --nodelist=gpu-[0,1] # load necessary modules ### Run this setup # [Cluster]: Use docker # docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4 ########################################################################## ###The following setting should be set in different project and cluster### ########################################################################## ### Project CONTAINER_NAME="multinode_verl_training" IMG="verl.rocm" DOCKERFILE="docker/Dockerfile.rocm" # echo $PWD verl_workdir="${HOME}/projects/verl_upstream" export TRANSFORMERS_CACHE="${HOME}/.cache/huggingface" export HF_HOME=$TRANSFORMERS_CACHE ### Cluster Network Setting export NCCL_DEBUG=TRACE export GPU_MAX_HW_QUEUES=2 export TORCH_NCCL_HIGH_PRIORITY=1 export NCCL_CHECKS_DISABLE=1 # export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7 export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9 export NCCL_IB_GID_INDEX=3 export NCCL_CROSS_NIC=0 export CUDA_DEVICE_MAX_CONNECTIONS=1 export NCCL_PROTO=Simple export RCCL_MSCCL_ENABLE=0 export TOKENIZERS_PARALLELISM=false export HSA_NO_SCRATCH_RECLAIM=1 ########################################################################## ### For rocm and training script # [ray] < 2.45.0 #export RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1 # [ray] >= 2.45.0 export RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1 # Patch with https://github.com/ray-project/ray/pull/52794 # Build and launch the Docker container srun bash -c " # Exit on any error set -e # Clean up dangling images (images with tag) docker image prune -f # Need to pull the docker first docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4 if ! docker images --format "{{.Repository}}:{{.Tag}}" | grep -q "${IMG}"; then echo \"Building ${IMG} image...\" docker build -f \"${DOCKERFILE}\" -t \"${IMG}\" . else echo \"${IMG} image already exists, skipping build\" fi # Removing old container if exists docker rm \"${CONTAINER_NAME}\" 2>/dev/null || true # Checking network devices ibdev2netdev # Launch the docker docker run --rm -d \ -e HYDRA_FULL_ERROR=1 \ -e RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1 \ -e RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1 \ -e NCCL_DEBUG=${NCCL_DEBUG} \ -e GPU_MAX_HW_QUEUES=${GPU_MAX_HW_QUEUES} \ -e TORCH_NCCL_HIGH_PRIORITY=${TORCH_NCCL_HIGH_PRIORITY} \ -e NCCL_CHECKS_DISABLE=${NCCL_CHECKS_DISABLE} \ -e NCCL_IB_HCA=${NCCL_IB_HCA} \ -e NCCL_IB_GID_INDEX=${NCCL_IB_GID_INDEX} \ -e NCCL_CROSS_NIC=${NCCL_CROSS_NIC} \ -e CUDA_DEVICE_MAX_CONNECTIONS=${CUDA_DEVICE_MAX_CONNECTIONS} \ -e NCCL_PROTO=${NCCL_PROTO} \ -e RCCL_MSCCL_ENABLE=${RCCL_MSCCL_ENABLE} \ -e TOKENIZERS_PARALLELISM=${TOKENIZERS_PARALLELISM} \ -e HSA_NO_SCRATCH_RECLAIM=${HSA_NO_SCRATCH_RECLAIM} \ -e TRANSFORMERS_CACHE=${TRANSFORMERS_CACHE} \ -e HF_HOME=${HF_HOME} \ --network host \ --device /dev/dri \ --device /dev/kfd \ --device /dev/infiniband \ --group-add video \ --cap-add SYS_PTRACE \ --security-opt seccomp=unconfined \ --privileged \ -v \${HOME}:\${HOME} \ -v \${HOME}/.ssh:/root/.ssh \ -w "${verl_workdir}" \ --shm-size 128G \ --name \"${CONTAINER_NAME}\" \ \"${IMG}\" \ tail -f /dev/null echo \"Container setup completed\" " # (Optional): If you do not want to root mode and require assign yuorself as the user # Please add `-e HOST_UID=$(id -u)` and `-e HOST_GID=$(id -g)` into the above docker launch script. ### Ray launch the nodes before training # Getting the node names nodes_array=($(scontrol show hostnames "$SLURM_JOB_NODELIST" | tr '\n' ' ')) head_node=${nodes_array[0]} head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address) # if we detect a space character in the head node IP, we'll # convert it to an ipv4 address. This step is optional. if [[ "$head_node_ip" == *" "* ]]; then IFS=' ' read -ra ADDR <<<"$head_node_ip" if [[ ${#ADDR[0]} -gt 16 ]]; then head_node_ip=${ADDR[1]} else head_node_ip=${ADDR[0]} fi echo "IPV6 address detected. We split the IPV4 address as $head_node_ip" fi port=6379 ip_head=$head_node_ip:$port export ip_head echo "IP Head: $ip_head" # make sure we set environment variables before Ray initialization # Print out all env variables printenv echo "Starting HEAD at $head_node" srun --nodes=1 --ntasks=1 -w "$head_node" \ docker exec "${CONTAINER_NAME}" \ ray start --head --node-ip-address="$head_node_ip" --port=$port \ --dashboard-port=8266 \ --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block & # optional, though may be useful in certain versions of Ray < 1.0. sleep 10 # number of nodes other than the head node worker_num=$((SLURM_JOB_NUM_NODES - 1)) for ((i = 1; i <= worker_num; i++)); do node_i=${nodes_array[$i]} echo "Debug: Starting worker on node_i = ${node_i}" if [ -z "$node_i" ]; then echo "Error: Empty node name for worker $i" continue fi echo "Starting WORKER $i at $node_i" srun --nodes=1 --ntasks=1 -w "$node_i" \ docker exec "${CONTAINER_NAME}" \ ray start --address "$ip_head" --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block & sleep 5 done # Ray initlization test (See whether any error in the above execution) echo "Testing Ray initialization in the slurm nodes..." docker exec "${CONTAINER_NAME}" python3 -c ' import ray try: ray.init(address="auto") print("\n=== Ray Cluster Status ===") print(f"Number of nodes: {len(ray.nodes())}") for node in ray.nodes(): print("Node: {}, Status: {}".format(node["NodeManagerHostname"], node["Alive"])) # print(f"Node: {node}") ray.shutdown() print("Ray initialization successful!") except Exception as e: print(f"Ray initialization failed: {str(e)}") ' echo "=== Ray test completed ===" ###### # Run data preprocessing echo "Starting data preprocessing..." docker exec "${CONTAINER_NAME}" \ python3 "examples/data_preprocess/gsm8k.py" "--local_dir" "../data/gsm8k" echo "Starting data preprocessing..." docker exec "${CONTAINER_NAME}" \ python3 "examples/data_preprocess/math_dataset.py" "--local_dir" "../data/math" train_files="../data/gsm8k/train.parquet" val_files="../data/gsm8k/test.parquet" # Download and test model echo "Loading model..." docker exec "${CONTAINER_NAME}" \ python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')" MODEL_PATH="Qwen/Qwen2-7B-Instruct" # Set model path after pipeline test MODEL_PATH="Qwen/Qwen2.5-0.5B-Instruct" echo "== Data and model loading Done ==" echo "Start to train..." docker exec "${CONTAINER_NAME}" \ python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')" MODEL_PATH="Qwen/Qwen2-7B-Instruct" PYTHONUNBUFFERED=1 srun --overlap --nodes=${SLURM_NNODES} --ntasks=1 -w "$head_node" \ docker exec "${CONTAINER_NAME}" \ python3 -m verl.trainer.main_ppo \ data.train_files=$train_files \ data.val_files=$val_files \ data.train_batch_size=1024 \ data.max_prompt_length=1024 \ data.max_response_length=1024 \ actor_rollout_ref.model.path=$MODEL_PATH \ actor_rollout_ref.model.enable_gradient_checkpointing=False \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=8 \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=16 \ actor_rollout_ref.rollout.tensor_model_parallel_size=2 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.9 \ actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16 \ actor_rollout_ref.ref.fsdp_config.param_offload=True \ critic.optim.lr=1e-5 \ critic.model.use_remove_padding=True \ critic.model.path=$MODEL_PATH \ critic.model.enable_gradient_checkpointing=False \ critic.ppo_micro_batch_size_per_gpu=8 \ critic.model.fsdp_config.param_offload=False \ critic.model.fsdp_config.optimizer_offload=False \ algorithm.kl_ctrl.kl_coef=0.0001 \ trainer.critic_warmup=0 \ trainer.logger=['console','wandb'] \ trainer.project_name='verl_example' \ trainer.experiment_name='Qwen2.5-32B-Instruct_function_rm' \ trainer.n_gpus_per_node=${SLURM_GPUS_PER_NODE} \ trainer.val_before_train=False \ trainer.nnodes=${SLURM_NNODES} \ trainer.save_freq=-1 \ trainer.test_freq=10 \ trainer.total_epochs=15 Run slurm_script.sh ~~~~~~~~~~~~~~~~~~~~ Just sbatch your slurm_script.sh .. code-block:: bash sbatch slurm_script.sh