Getting started with AMD (ROCM Kernel)
=====================================================
Last updated: 06/02/2025.
Author: `Yusheng Su `_
Setup
-----
If you run on AMD GPUs (MI300) with ROCM platform, you cannot use the previous quickstart to run verl. You should follow the following steps to build a docker and set ``RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES`` or ``RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES`` when starting ray in verl's RLHF training.
docker/Dockerfile.rocm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: bash
# Build the docker in the repo dir:
# docker build -f docker/Dockerfile.rocm -t verl-rocm .
# docker images # you can find your built docker
# Support - Traing: fsdp; Inference: vllm
# FROM rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
# Support - Traing: fsdp; Inference: vllm, sglang
FROM lmsysorg/sglang:v0.4.6.post5-rocm630
# Set working directory
# WORKDIR $PWD/app
# Set environment variables
ENV PYTORCH_ROCM_ARCH="gfx90a;gfx942"
ENV HIPCC_COMPILE_FLAGS_APPEND="--amdgpu-target=gfx90a;gfx942 -D__HIP_PLATFORM_AMD__"
ENV CFLAGS="-D__HIP_PLATFORM_AMD__"
ENV CXXFLAGS="-D__HIP_PLATFORM_AMD__"
# Install vllm
RUN pip uninstall -y vllm && \
rm -rf vllm && \
git clone -b v0.6.3 https://github.com/vllm-project/vllm.git && \
cd vllm && \
MAX_JOBS=$(nproc) python3 setup.py install && \
cd .. && \
rm -rf vllm
# Copy the entire project directory
COPY . .
# Install dependencies
RUN pip install "tensordict<0.6" --no-deps && \
pip install accelerate \
codetiming \
datasets \
dill \
hydra-core \
liger-kernel \
numpy \
pandas \
peft \
"pyarrow>=15.0.0" \
pylatexenc \
"ray[data,train,tune,serve]>=2.45.0" \
torchdata \
transformers \
wandb \
orjson \
pybind11 && \
pip install -e . --no-deps
# Install torch_memory_saver
RUN pip install git+https://github.com/ExtremeViscent/torch_memory_saver.git --no-deps
Build the image:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code-block:: bash
docker build -t verl-rocm .
Run the container
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Optional: Running without root and with user permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: bash
docker run --rm -it \
--device /dev/dri \
--device /dev/kfd \
-p 8265:8265 \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v $HOME/.ssh:/root/.ssh \
-v $HOME:$HOME \
--shm-size 128G \
-w $PWD \
verl-rocm \
/bin/bash
(Optional): If you do not want to root mode and require assign yourself as the user
Please add ``-e HOST_UID=$(id -u)`` and ``-e HOST_GID=$(id -g)`` into the above docker launch script.
Example
-------
Due to to special setting in AMD (ROCM) torch,
1. If your ``ray>=2.45.0`` (default), you need to set ``RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES`` when starting ray in verl's RLHF training.
2. If your ``ray<2.45.0``, you need to set ``RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES`` when starting ray in verl's RLHF training.
Inference ``$ENGINE`` can be ``vllm`` or ``sglang``. We choose ``vllm`` as default in the following examples.
PPO
~~~
.. code-block:: bash
YOUR_PROJECT_NAME=r1-verl-ppo-upstream
YOUR_RUN_NAME=r1-training_ppo-upstream
# export HYDRA_FULL_ERROR=1
# [ray] < 2.45.0
#export RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
# [ray] >= 2.45.0
export RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1 # Patch with https://github.com/ray-project/ray/pull/52794
GPUS_PER_NODE=8
MODEL_PATH=Qwen/Qwen2.5-0.5B-Instruct
python3 examples/data_preprocess/gsm8k.py --local_dir data/gsm8k
python3 -c "import transformers; transformers.pipeline('text-generation', model='$MODEL_PATH')"
ENGINE=vllm #sglang
PYTHONUNBUFFERED=1 python3 -m verl.trainer.main_ppo \
data.train_files=data/gsm8k/train.parquet \
data.val_files=data/gsm8k/test.parquet \
data.train_batch_size=256 \
data.val_batch_size=1312 \
data.max_prompt_length=512 \
data.max_response_length=256 \
actor_rollout_ref.model.path=$MODEL_PATH \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
actor_rollout_ref.rollout.name=$ENGINE \
actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \
critic.optim.lr=1e-5 \
critic.model.path=$MODEL_PATH \
critic.ppo_micro_batch_size_per_gpu=4 \
algorithm.kl_ctrl.kl_coef=0.001 \
trainer.logger=['console'] \
trainer.project_name=$YOUR_PROJECT_NAME \
trainer.experiment_name=$YOUR_RUN_NAME \
trainer.val_before_train=False \
trainer.default_hdfs_dir=null \
trainer.n_gpus_per_node=$GPUS_PER_NODE \
trainer.nnodes=1 \
trainer.save_freq=10 \
trainer.test_freq=10 \
trainer.total_epochs=15 #2>&1 | tee verl_demo.log
GRPO
~~~~
.. code-block:: bash
YOUR_PROJECT_NAME=r1-verl-grpo-upstream
YOUR_RUN_NAME=r1-training_grpo-upstream
# export HYDRA_FULL_ERROR=1
# export FSDP_VERBOSE=1
# [ray] < 2.45.0
#export RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
# [ray] >= 2.45.0
export RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1 # Patch with https://github.com/ray-project/ray/pull/52794
GPUS_PER_NODE=8
MODEL_PATH=Qwen/Qwen2.5-0.5B-Instruct
# MODEL_PATH=Qwen/Qwen2-7B-Instruct
python3 examples/data_preprocess/gsm8k.py --local_dir data/gsm8k
python3 -c "import transformers; transformers.pipeline('text-generation', model='$MODEL_PATH')"
ENGINE=vllm #sglang
python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=grpo \
data.train_files=data/gsm8k/train.parquet \
data.val_files=data/gsm8k/test.parquet \
data.train_batch_size=1024 \
data.val_batch_size=1312 \
data.max_prompt_length=512 \
data.max_response_length=1024 \
actor_rollout_ref.model.path=$MODEL_PATH \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.ppo_mini_batch_size=256 \
actor_rollout_ref.actor.use_dynamic_bsz=True \
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=24000 \
actor_rollout_ref.actor.use_kl_loss=True \
actor_rollout_ref.actor.kl_loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.model.enable_gradient_checkpointing=Flase \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.tensor_model_parallel_size=2 \
actor_rollout_ref.rollout.name=$ENGINE \
actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
actor_rollout_ref.rollout.n=5 \
actor_rollout_ref.ref.fsdp_config.param_offload=False \
algorithm.kl_ctrl.kl_coef=0.001 \
trainer.critic_warmup=0 \
trainer.logger=['console'] \
trainer.project_name=$YOUR_PROJECT_NAME \
trainer.experiment_name=$YOUR_RUN_NAME \
trainer.n_gpus_per_node=$GPUS_PER_NODE \
trainer.val_before_train=False \
trainer.nnodes=1 \
trainer.save_freq=-1 \
trainer.test_freq=10 \
trainer.total_epochs=15
Multi-node training: slurm with Docker/Podman container
---------------------------------------------------------------------------------------
If you want to run multi-node training with slurm, you can use the following script.
.. note::
1. You need to use ``podman`` or ``docker`` in the following script. We will release the apptainer script later.
2. If you want to use ``podman``, you just replace ``docker`` with ``podman`` in the following script.
The script includes the following steps:
1. SLURM Configuration
2. Environment Setup
3. Docker/Podman Container Setup
4. Ray Cluster Initialization
5. Data Preprocessing
6. Model Setup
7. Training Launch
slurm_script.sh
~~~~~~~~~~~~~~~~~~~~
.. code-block:: bash
#!/bin/bash
#SBATCH --job-name=verl-ray-on-slurm
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=2
#SBATCH --mem=200G
#SBATCH --time=30-00:00:00
#SBATCH --gpus-per-node=8
#SBATCH --cpus-per-task=28
#SBATCH --output=../verl_log/slurm-%j.out
#SBATCH --error=../verl_log/slurm-%j.err
#SBATCH --nodelist=gpu-[0,1]
# load necessary modules
### Run this setup
# [Cluster]: Use docker
# docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
##########################################################################
###The following setting should be set in different project and cluster###
##########################################################################
### Project
CONTAINER_NAME="multinode_verl_training"
IMG="verl.rocm"
DOCKERFILE="docker/Dockerfile.rocm"
# echo $PWD
verl_workdir="${HOME}/projects/verl_upstream"
export TRANSFORMERS_CACHE="${HOME}/.cache/huggingface"
export HF_HOME=$TRANSFORMERS_CACHE
### Cluster Network Setting
export NCCL_DEBUG=TRACE
export GPU_MAX_HW_QUEUES=2
export TORCH_NCCL_HIGH_PRIORITY=1
export NCCL_CHECKS_DISABLE=1
# export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7
export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9
export NCCL_IB_GID_INDEX=3
export NCCL_CROSS_NIC=0
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_PROTO=Simple
export RCCL_MSCCL_ENABLE=0
export TOKENIZERS_PARALLELISM=false
export HSA_NO_SCRATCH_RECLAIM=1
##########################################################################
### For rocm and training script
# [ray] < 2.45.0
#export RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1
# [ray] >= 2.45.0
export RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1 # Patch with https://github.com/ray-project/ray/pull/52794
# Build and launch the Docker container
srun bash -c "
# Exit on any error
set -e
# Clean up dangling images (images with tag)
docker image prune -f
# Need to pull the docker first
docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
if ! docker images --format "{{.Repository}}:{{.Tag}}" | grep -q "${IMG}"; then
echo \"Building ${IMG} image...\"
docker build -f \"${DOCKERFILE}\" -t \"${IMG}\" .
else
echo \"${IMG} image already exists, skipping build\"
fi
# Removing old container if exists
docker rm \"${CONTAINER_NAME}\" 2>/dev/null || true
# Checking network devices
ibdev2netdev
# Launch the docker
docker run --rm -d \
-e HYDRA_FULL_ERROR=1 \
-e RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1 \
-e RAY_EXPERIMENTAL_NOSET_HIP_VISIBLE_DEVICES=1 \
-e NCCL_DEBUG=${NCCL_DEBUG} \
-e GPU_MAX_HW_QUEUES=${GPU_MAX_HW_QUEUES} \
-e TORCH_NCCL_HIGH_PRIORITY=${TORCH_NCCL_HIGH_PRIORITY} \
-e NCCL_CHECKS_DISABLE=${NCCL_CHECKS_DISABLE} \
-e NCCL_IB_HCA=${NCCL_IB_HCA} \
-e NCCL_IB_GID_INDEX=${NCCL_IB_GID_INDEX} \
-e NCCL_CROSS_NIC=${NCCL_CROSS_NIC} \
-e CUDA_DEVICE_MAX_CONNECTIONS=${CUDA_DEVICE_MAX_CONNECTIONS} \
-e NCCL_PROTO=${NCCL_PROTO} \
-e RCCL_MSCCL_ENABLE=${RCCL_MSCCL_ENABLE} \
-e TOKENIZERS_PARALLELISM=${TOKENIZERS_PARALLELISM} \
-e HSA_NO_SCRATCH_RECLAIM=${HSA_NO_SCRATCH_RECLAIM} \
-e TRANSFORMERS_CACHE=${TRANSFORMERS_CACHE} \
-e HF_HOME=${HF_HOME} \
--network host \
--device /dev/dri \
--device /dev/kfd \
--device /dev/infiniband \
--group-add video \
--cap-add SYS_PTRACE \
--security-opt seccomp=unconfined \
--privileged \
-v \${HOME}:\${HOME} \
-v \${HOME}/.ssh:/root/.ssh \
-w "${verl_workdir}" \
--shm-size 128G \
--name \"${CONTAINER_NAME}\" \
\"${IMG}\" \
tail -f /dev/null
echo \"Container setup completed\"
"
# (Optional): If you do not want to root mode and require assign yuorself as the user
# Please add `-e HOST_UID=$(id -u)` and `-e HOST_GID=$(id -g)` into the above docker launch script.
### Ray launch the nodes before training
# Getting the node names
nodes_array=($(scontrol show hostnames "$SLURM_JOB_NODELIST" | tr '\n' ' '))
head_node=${nodes_array[0]}
head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address)
# if we detect a space character in the head node IP, we'll
# convert it to an ipv4 address. This step is optional.
if [[ "$head_node_ip" == *" "* ]]; then
IFS=' ' read -ra ADDR <<<"$head_node_ip"
if [[ ${#ADDR[0]} -gt 16 ]]; then
head_node_ip=${ADDR[1]}
else
head_node_ip=${ADDR[0]}
fi
echo "IPV6 address detected. We split the IPV4 address as $head_node_ip"
fi
port=6379
ip_head=$head_node_ip:$port
export ip_head
echo "IP Head: $ip_head"
# make sure we set environment variables before Ray initialization
# Print out all env variables
printenv
echo "Starting HEAD at $head_node"
srun --nodes=1 --ntasks=1 -w "$head_node" \
docker exec "${CONTAINER_NAME}" \
ray start --head --node-ip-address="$head_node_ip" --port=$port \
--dashboard-port=8266 \
--num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
# optional, though may be useful in certain versions of Ray < 1.0.
sleep 10
# number of nodes other than the head node
worker_num=$((SLURM_JOB_NUM_NODES - 1))
for ((i = 1; i <= worker_num; i++)); do
node_i=${nodes_array[$i]}
echo "Debug: Starting worker on node_i = ${node_i}"
if [ -z "$node_i" ]; then
echo "Error: Empty node name for worker $i"
continue
fi
echo "Starting WORKER $i at $node_i"
srun --nodes=1 --ntasks=1 -w "$node_i" \
docker exec "${CONTAINER_NAME}" \
ray start --address "$ip_head" --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
sleep 5
done
# Ray initlization test (See whether any error in the above execution)
echo "Testing Ray initialization in the slurm nodes..."
docker exec "${CONTAINER_NAME}" python3 -c '
import ray
try:
ray.init(address="auto")
print("\n=== Ray Cluster Status ===")
print(f"Number of nodes: {len(ray.nodes())}")
for node in ray.nodes():
print("Node: {}, Status: {}".format(node["NodeManagerHostname"], node["Alive"]))
# print(f"Node: {node}")
ray.shutdown()
print("Ray initialization successful!")
except Exception as e:
print(f"Ray initialization failed: {str(e)}")
'
echo "=== Ray test completed ==="
######
# Run data preprocessing
echo "Starting data preprocessing..."
docker exec "${CONTAINER_NAME}" \
python3 "examples/data_preprocess/gsm8k.py" "--local_dir" "../data/gsm8k"
echo "Starting data preprocessing..."
docker exec "${CONTAINER_NAME}" \
python3 "examples/data_preprocess/math_dataset.py" "--local_dir" "../data/math"
train_files="../data/gsm8k/train.parquet"
val_files="../data/gsm8k/test.parquet"
# Download and test model
echo "Loading model..."
docker exec "${CONTAINER_NAME}" \
python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')"
MODEL_PATH="Qwen/Qwen2-7B-Instruct"
# Set model path after pipeline test
MODEL_PATH="Qwen/Qwen2.5-0.5B-Instruct"
echo "== Data and model loading Done =="
echo "Start to train..."
docker exec "${CONTAINER_NAME}" \
python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')"
MODEL_PATH="Qwen/Qwen2-7B-Instruct"
PYTHONUNBUFFERED=1 srun --overlap --nodes=${SLURM_NNODES} --ntasks=1 -w "$head_node" \
docker exec "${CONTAINER_NAME}" \
python3 -m verl.trainer.main_ppo \
data.train_files=$train_files \
data.val_files=$val_files \
data.train_batch_size=1024 \
data.max_prompt_length=1024 \
data.max_response_length=1024 \
actor_rollout_ref.model.path=$MODEL_PATH \
actor_rollout_ref.model.enable_gradient_checkpointing=False \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.ppo_mini_batch_size=256 \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=8 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=16 \
actor_rollout_ref.rollout.tensor_model_parallel_size=2 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.gpu_memory_utilization=0.9 \
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
critic.optim.lr=1e-5 \
critic.model.use_remove_padding=True \
critic.model.path=$MODEL_PATH \
critic.model.enable_gradient_checkpointing=False \
critic.ppo_micro_batch_size_per_gpu=8 \
critic.model.fsdp_config.param_offload=False \
critic.model.fsdp_config.optimizer_offload=False \
algorithm.kl_ctrl.kl_coef=0.0001 \
trainer.critic_warmup=0 \
trainer.logger=['console','wandb'] \
trainer.project_name='verl_example' \
trainer.experiment_name='Qwen2.5-32B-Instruct_function_rm' \
trainer.n_gpus_per_node=${SLURM_GPUS_PER_NODE} \
trainer.val_before_train=False \
trainer.nnodes=${SLURM_NNODES} \
trainer.save_freq=-1 \
trainer.test_freq=10 \
trainer.total_epochs=15
Run slurm_script.sh
~~~~~~~~~~~~~~~~~~~~
Just sbatch your slurm_script.sh
.. code-block:: bash
sbatch slurm_script.sh