Multinode Training ================== Last updated: 06/10/2025. .. _wuxibin89: https://github.com/wuxibin89 Author: `Xibin Wu `_, `Yusheng Su `_. Manual ------ Set up multinode ray cluster ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. Start head node with ``ray start --head --dashboard-host=0.0.0.0``, there're 2 address you should care about: - GCS address: ``ray start --address=
``, where worker node should connect to. - Dashboard address: ``
:8265``, where you should submit job to the cluster. .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/head.png?raw=true 2. Start worker node with ``ray start --address=
`` you get above. .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/worker.png?raw=true 3. Now you should see the cluster have 2 nodes with ``ray status``. .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/status.png?raw=true 4. Additionally, you can access dashboard in the browser with the address you get above. *Firewall rules maybe need configure to access the dashboard, if there's any trouble, please contact your network administrator.* .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/overview.png?raw=true Submit job to ray cluster ~~~~~~~~~~~~~~~~~~~~~~~~~ 1. Submit ray job to cluster with the dashboard address you get above. .. code-block:: bash ray job submit --address="http://127.0.0.1:8265" \ --runtime-env=verl/trainer/runtime_env.yaml \ --no-wait \ -- \ python3 -m verl.trainer.main_ppo \ trainer.n_gpus_per_node=8 \ trainer.nnodes=2 \ ... .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/submit.png?raw=true 2. Then you can check the job status with the following commands: - ray job list: list all jobs submitted to the cluster. - ray job logs : query the logs of the job. - ray job status : query the status of the job. - ray job stop : request the job to be stopped. 3. You can also access driver/task/actor logs in ``/tmp/ray/session_latest/logs/``, driver log is ``job-driver-raysubmit_.log``. 4. We strongly recommend you to view job detail from dashboard in multinode training, because it provide more structure way to view the job information. .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/job.png?raw=true .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/job_detail.png?raw=true Slurm ----- TBD dstack ------ `dstackai/dstack `_ is an open-source container orchestrator that simplifies distributed training across cloud providers and on-premises environments without the need to use K8S or Slurm. Prerequisite ~~~~~~~~~~~~ Once dstack is `installed `_, initialize the directory as a repo with ``dstack init``. .. code-block:: bash mkdir myproject && cd myproject dstack init **Create a fleet** Before submitting distributed training jobs, create a `dstack` `fleet `_. Run a Ray cluster task ~~~~~~~~~~~~~~~~~~~~~~ Once the fleet is created, define a Ray cluster task, e.g. in ``ray-cluster.dstack.yml``: .. code-block:: yaml type: task name: ray-verl-cluster nodes: 2 env: - WANDB_API_KEY - PYTHONUNBUFFERED=1 - CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 image: whatcanyousee/verl:ngc-cu124-vllm0.8.5-sglang0.4.6-mcore0.12.0-te2.2 commands: - git clone https://github.com/volcengine/verl - cd verl - pip install --no-deps -e . - pip install hf_transfer hf_xet - | if [ $DSTACK_NODE_RANK = 0 ]; then python3 examples/data_preprocess/gsm8k.py --local_dir ~/data/gsm8k python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2.5-7B-Instruct')" ray start --head --port=6379; else ray start --address=$DSTACK_MASTER_NODE_IP:6379 fi # Expose Ray dashboard port ports: - 8265 resources: gpu: 80GB:8 shm_size: 128GB # Save checkpoints on the instance volumes: - /checkpoints:/checkpoints Now, if you run this task via `dstack apply`, it will automatically forward the Ray's dashboard port to `localhost:8265`. .. code-block:: bash dstack apply -f ray-cluster.dstack.yml As long as the `dstack apply` is attached, you can use `localhost:8265` to submit Ray jobs for execution Submit Ray jobs ~~~~~~~~~~~~~~~ Before you can submit Ray jobs, ensure to install `ray` locally: .. code-block:: shell pip install ray Now you can submit the training job to the Ray cluster which is available at ``localhost:8265``: .. code-block:: shell $ RAY_ADDRESS=http://localhost:8265 $ ray job submit \ -- python3 -m verl.trainer.main_ppo \ data.train_files=/root/data/gsm8k/train.parquet \ data.val_files=/root/data/gsm8k/test.parquet \ data.train_batch_size=256 \ data.max_prompt_length=512 \ data.max_response_length=256 \ actor_rollout_ref.model.path=Qwen/Qwen2.5-7B-Instruct \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.ppo_mini_batch_size=64 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \ actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \ actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \ critic.optim.lr=1e-5 \ critic.model.path=Qwen/Qwen2.5-7B-Instruct \ critic.ppo_micro_batch_size_per_gpu=4 \ algorithm.kl_ctrl.kl_coef=0.001 \ trainer.project_name=ppo_training \ trainer.experiment_name=qwen-2.5-7B \ trainer.val_before_train=False \ trainer.default_hdfs_dir=null \ trainer.n_gpus_per_node=8 \ trainer.nnodes=2 \ trainer.default_local_dir=/checkpoints \ trainer.save_freq=10 \ trainer.test_freq=10 \ trainer.total_epochs=15 2>&1 | tee verl_demo.log \ trainer.resume_mode=disable For more details on how `dstack` works, check out its `documentation `_. How to debug? --------------------- Ray Distributed Debugger VSCode Extension (Recommended) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. Starting with Ray 2.39, Anyscale has introduced the `Ray Distributed Debugger `_ VSCode extension. Follow the extension’s installation instructions, then add your cluster using the dashboard URL you obtained earlier. .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/debugger.png?raw=true :alt: Ray Distributed Debugger VSCode extension screenshot 2. Prerequisites. Ensure the following are installed (see the extension README for more detail): - Visual Studio Code - `ray[default]` >= 2.9.1 - `debugpy` >= 1.8.0 .. image:: https://github.com/aoshen524/verl/blob/main/docs/start/c7098b755ff689859837773a916c857.png?raw=true :alt: VSCode with Ray prerequisites 3. Environment Variables. To enable post‑mortem debugging, set: .. code-block:: bash export RAY_DEBUG_POST_MORTEM=1 .. admonition:: Note :class: important Be sure to remove any legacy flags before starting Ray: - `RAY_DEBUG=legacy` - `--ray-debugger-external` 4. Configuring BreakpointsSet up breakpoint() in your code, and submit job to cluster. Then the extension will show the breakpoint information. 1. Insert `breakpoint()` calls into your remote functions. 2. Submit your job to the cluster. The extension will detect active breakpoints and display them in VSCode. .. image:: https://github.com/aoshen524/verl/blob/main/docs/start/4ddad74395c79a1402331c0ce73316f.png?raw=true :alt: Detected breakpoint in VSCode **Note:** Breakpoints are only supported inside functions decorated with `@ray.remote`. 5. Launching the Debugger. Run your job directly from the command line (do not use a `launch.json`): .. code-block:: bash python job.py 6. Attaching to a Breakpoint. Once the process hits the first `breakpoint()`, click the Ray Distributed Debugger icon in the VSCode sidebar to attach the debugger. .. image:: https://github.com/aoshen524/verl/blob/main/docs/start/4ddad74395c79a1402331c0ce73316f.png?raw=true :alt: Attaching VSCode debugger to Ray process 7. Debugging With Multiple breakpoint(). For each subsequent task, first disconnect the current debugger session, then click the extension icon again to attach to the next breakpoint. .. image:: https://github.com/aoshen524/verl/blob/main/docs/start/6e83c910a62c82fecb89c6619e001cd.png?raw=true :alt: Disconnecting and reconnecting the debugger Legacy Ray Debugger ~~~~~~~~~~~~~~~~~~~ 1. Ray has a builtin legacy `debugger `_ that allows you to debug your distributed applications. To enable debugger, start ray cluster with ``RAY_DEBUG=legacy`` and ``--ray-debugger-external``. .. code-block:: bash # start head node RAY_DEBUG=legacy ray start --head --dashboard-host=0.0.0.0 --ray-debugger-external # start worker node RAY_DEBUG=legacy ray start --address='10.124.46.192:6379' --ray-debugger-external 2. Set up breakpoint in your code, and submit job to cluster. Then run ``ray debug`` to wait breakpoint: .. image:: https://github.com/eric-haibin-lin/verl-community/blob/main/docs/ray/legacy.png?raw=true Multi-node training on AMD clusters --------------------------------------------------------------------------------------- If you want to run multi-node training with slurm with Docker/Podman container on AMD Cluster, you can use the following script. If you encounter any issues in using AMD GPUs running verl, please contact `Yusheng Su `_. .. note:: 1. You need to use ``podman`` or ``docker`` in the following script. We will release the apptainer script later. 2. If you want to use ``podman``, you just replace ``docker`` with ``podman`` in the following script. The script includes the following steps: 1. SLURM Configuration 2. Environment Setup 3. Docker/Podman Container Setup 4. Ray Cluster Initialization 5. Data Preprocessing 6. Model Setup 7. Training Launch slurm_script.sh ~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash #!/bin/bash #SBATCH --job-name=verl-ray-on-slurm #SBATCH --nodes=2 #SBATCH --ntasks-per-node=2 #SBATCH --mem=200G #SBATCH --time=30-00:00:00 #SBATCH --gpus-per-node=8 #SBATCH --cpus-per-task=28 #SBATCH --output=../verl_log/slurm-%j.out #SBATCH --error=../verl_log/slurm-%j.err #SBATCH --nodelist=gpu-[0,1] # load necessary modules ### Run this setup # [Cluster]: Use docker # docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4 ########################################################################## ###The following setting should be set in different project and cluster### ########################################################################## ### Project CONTAINER_NAME="multinode_verl_training" IMG="verl.rocm" DOCKERFILE="docker/Dockerfile.rocm" # echo $PWD verl_workdir="${HOME}/projects/verl_upstream" export TRANSFORMERS_CACHE="${HOME}/.cache/huggingface" export HF_HOME=$TRANSFORMERS_CACHE ### Cluster Network Setting export NCCL_DEBUG=TRACE export GPU_MAX_HW_QUEUES=2 export TORCH_NCCL_HIGH_PRIORITY=1 export NCCL_CHECKS_DISABLE=1 # export NCCL_IB_HCA=rdma0,rdma1,rdma2,rdma3,rdma4,rdma5,rdma6,rdma7 export NCCL_IB_HCA=mlx5_0,mlx5_1,mlx5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_8,mlx5_9 export NCCL_IB_GID_INDEX=3 export NCCL_CROSS_NIC=0 export CUDA_DEVICE_MAX_CONNECTIONS=1 export NCCL_PROTO=Simple export RCCL_MSCCL_ENABLE=0 export TOKENIZERS_PARALLELISM=false export HSA_NO_SCRATCH_RECLAIM=1 ########################################################################## ### For rocm and training script export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 export ROCR_VISIBLE_DEVICES=$HIP_VISIBLE_DEVICES export CUDA_VISIBLE_DEVICES=$HIP_VISIBLE_DEVICES # Build and launch the Docker container srun bash -c " # Exit on any error set -e # Clean up dangling images (images with tag) docker image prune -f # Need to pull the docker first docker pull docker.io/rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4 if ! docker images --format "{{.Repository}}:{{.Tag}}" | grep -q "${IMG}"; then echo \"Building ${IMG} image...\" docker build -f \"${DOCKERFILE}\" -t \"${IMG}\" . else echo \"${IMG} image already exists, skipping build\" fi # Removing old container if exists docker rm \"${CONTAINER_NAME}\" 2>/dev/null || true # Checking network devices ibdev2netdev # Launch the docker docker run --rm -d \ -e HYDRA_FULL_ERROR=1 \ -e HIP_VISIBLE_DEVICES=${HIP_VISIBLE_DEVICES} \ -e ROCR_VISIBLE_DEVICES=${ROCR_VISIBLE_DEVICES} \ -e CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES} \ -e NCCL_DEBUG=${NCCL_DEBUG} \ -e GPU_MAX_HW_QUEUES=${GPU_MAX_HW_QUEUES} \ -e TORCH_NCCL_HIGH_PRIORITY=${TORCH_NCCL_HIGH_PRIORITY} \ -e NCCL_CHECKS_DISABLE=${NCCL_CHECKS_DISABLE} \ -e NCCL_IB_HCA=${NCCL_IB_HCA} \ -e NCCL_IB_GID_INDEX=${NCCL_IB_GID_INDEX} \ -e NCCL_CROSS_NIC=${NCCL_CROSS_NIC} \ -e CUDA_DEVICE_MAX_CONNECTIONS=${CUDA_DEVICE_MAX_CONNECTIONS} \ -e NCCL_PROTO=${NCCL_PROTO} \ -e RCCL_MSCCL_ENABLE=${RCCL_MSCCL_ENABLE} \ -e TOKENIZERS_PARALLELISM=${TOKENIZERS_PARALLELISM} \ -e HSA_NO_SCRATCH_RECLAIM=${HSA_NO_SCRATCH_RECLAIM} \ -e TRANSFORMERS_CACHE=${TRANSFORMERS_CACHE} \ -e HF_HOME=${HF_HOME} \ --network host \ --device /dev/dri \ --device /dev/kfd \ --device /dev/infiniband \ --group-add video \ --cap-add SYS_PTRACE \ --security-opt seccomp=unconfined \ --privileged \ -v \${HOME}:\${HOME} \ -v \${HOME}/.ssh:/root/.ssh \ -w "${verl_workdir}" \ --shm-size 128G \ --name \"${CONTAINER_NAME}\" \ \"${IMG}\" \ tail -f /dev/null echo \"Container setup completed\" " # (Optional): If you do not want to root mode and require assign yuorself as the user # Please add `-e HOST_UID=$(id -u)` and `-e HOST_GID=$(id -g)` into the above docker launch script. ### Ray launch the nodes before training # Getting the node names nodes_array=($(scontrol show hostnames "$SLURM_JOB_NODELIST" | tr '\n' ' ')) head_node=${nodes_array[0]} head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address) # if we detect a space character in the head node IP, we'll # convert it to an ipv4 address. This step is optional. if [[ "$head_node_ip" == *" "* ]]; then IFS=' ' read -ra ADDR <<<"$head_node_ip" if [[ ${#ADDR[0]} -gt 16 ]]; then head_node_ip=${ADDR[1]} else head_node_ip=${ADDR[0]} fi echo "IPV6 address detected. We split the IPV4 address as $head_node_ip" fi port=6379 ip_head=$head_node_ip:$port export ip_head echo "IP Head: $ip_head" # make sure we set environment variables before Ray initialization # Print out all env variables printenv echo "Starting HEAD at $head_node" srun --nodes=1 --ntasks=1 -w "$head_node" \ docker exec "${CONTAINER_NAME}" \ ray start --head --node-ip-address="$head_node_ip" --port=$port \ --dashboard-port=8266 \ --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block & # optional, though may be useful in certain versions of Ray < 1.0. sleep 10 # number of nodes other than the head node worker_num=$((SLURM_JOB_NUM_NODES - 1)) for ((i = 1; i <= worker_num; i++)); do node_i=${nodes_array[$i]} echo "Debug: Starting worker on node_i = ${node_i}" if [ -z "$node_i" ]; then echo "Error: Empty node name for worker $i" continue fi echo "Starting WORKER $i at $node_i" srun --nodes=1 --ntasks=1 -w "$node_i" \ docker exec "${CONTAINER_NAME}" \ ray start --address "$ip_head" --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block & sleep 5 done # Ray initlization test (See whether any error in the above execution) echo "Testing Ray initialization in the slurm nodes..." docker exec "${CONTAINER_NAME}" python3 -c ' import ray try: ray.init(address="auto") print("\n=== Ray Cluster Status ===") print(f"Number of nodes: {len(ray.nodes())}") for node in ray.nodes(): print("Node: {}, Status: {}".format(node["NodeManagerHostname"], node["Alive"])) # print(f"Node: {node}") ray.shutdown() print("Ray initialization successful!") except Exception as e: print(f"Ray initialization failed: {str(e)}") ' echo "=== Ray test completed ===" ###### # Run data preprocessing echo "Starting data preprocessing..." docker exec "${CONTAINER_NAME}" \ python3 "examples/data_preprocess/gsm8k.py" "--local_dir" "../data/gsm8k" echo "Starting data preprocessing..." docker exec "${CONTAINER_NAME}" \ python3 "examples/data_preprocess/math_dataset.py" "--local_dir" "../data/math" train_files="../data/gsm8k/train.parquet" val_files="../data/gsm8k/test.parquet" # Download and test model echo "Loading model..." docker exec "${CONTAINER_NAME}" \ python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')" MODEL_PATH="Qwen/Qwen2-7B-Instruct" # Set model path after pipeline test MODEL_PATH="Qwen/Qwen2.5-0.5B-Instruct" echo "== Data and model loading Done ==" echo "Start to train..." docker exec "${CONTAINER_NAME}" \ python3 -c "import transformers; transformers.pipeline('text-generation', model='Qwen/Qwen2-7B-Instruct')" MODEL_PATH="Qwen/Qwen2-7B-Instruct" PYTHONUNBUFFERED=1 srun --overlap --nodes=${SLURM_NNODES} --ntasks=1 -w "$head_node" \ docker exec "${CONTAINER_NAME}" \ python3 -m verl.trainer.main_ppo \ data.train_files=$train_files \ data.val_files=$val_files \ data.train_batch_size=1024 \ data.max_prompt_length=1024 \ data.max_response_length=1024 \ actor_rollout_ref.model.path=$MODEL_PATH \ actor_rollout_ref.model.enable_gradient_checkpointing=False \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=8 \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=16 \ actor_rollout_ref.rollout.tensor_model_parallel_size=2 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.9 \ actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=16 \ actor_rollout_ref.ref.fsdp_config.param_offload=True \ critic.optim.lr=1e-5 \ critic.model.use_remove_padding=True \ critic.model.path=$MODEL_PATH \ critic.model.enable_gradient_checkpointing=False \ critic.ppo_micro_batch_size_per_gpu=8 \ critic.model.fsdp_config.param_offload=False \ critic.model.fsdp_config.optimizer_offload=False \ algorithm.kl_ctrl.kl_coef=0.0001 \ trainer.critic_warmup=0 \ trainer.logger=['console','wandb'] \ trainer.project_name='verl_example' \ trainer.experiment_name='Qwen2.5-32B-Instruct_function_rm' \ trainer.n_gpus_per_node=${SLURM_GPUS_PER_NODE} \ trainer.val_before_train=False \ trainer.nnodes=${SLURM_NNODES} \ trainer.save_freq=-1 \ trainer.test_freq=10 \ trainer.total_epochs=15 Run multi-node training with above slurm_script.sh ~~~~~~~~~~~~~~~~~~~~ Just sbatch your slurm_script.sh .. code-block:: bash sbatch slurm_script.sh